
KTU - CST202 - Computer Organization and Architecture Module: 2

Module: 2

REGISTER TRANSFER LOGIC: Inter Register Transfer – Arithmetic, Logic

and Shift Micro Operations.

PROCESSOR LOGIC DESIGN: Processor Organisation - Arithmetic Logic

Unit- Design of Arithmetic Unit, Design of Logic circuit, Design of

Arithmetic Logic Unit – Status Register- Design of Shifter –Processor Unit

–Design of Accumulator.

REGISTER TRANSFER LOGIC:

Digital system is a collection of digital hardware modules. A digital system is a

sequential logic system constructed with flip flops and gates. The sequential circuit can be

specified by means of a state table. Specifying a large digital system with a state table would be

very difficult, since the number of states would be very large.

To overcome this difficulty, digital systems are designed using a modular approach,

where each modular subsystem performs some functional task. The modules are constructed

from such digital functions as registers, counters, decoders, multiplexers, arithmetic elements

and control logic. Various modules are interconnected with data and control path. The

interconnection of digital functions cannot be described by means of combinational or sequential

logic techniques.

The information flow and the processing task among the data stored in the registers can

be described by means of register transfer logic. The registers are selected as primitive

components of the system. Register transfer logic uses a set of expressions and statements which

compare the statements used in programming language. It provides the necessary tool for

specifying the interconnection between various digital functions.

Components of Register Transfer Logic

1. The set of registers in the system and their functions:A register also encompasses all

type of registers including shift registers, counters and memory units.

2. The binary-coded information stored in the registers: The binary information stored in

registers may be binary numbers, binary coded decimal numbers, alphanumeric characters,

control information or any other binary coded information.

3. The operations performed on the information stored in the registers: The operations

performed on data stored in registers are called micro operations. Examples are shift, count,

add, clear and load

4. The control functions that initiate the sequence of operations: The control functions

that initiate the sequence of operations consists of timing signals that sequence the operations

one at a time.

KTU - CST202 - Computer Organization and Architecture Module: 2

2

Register transfer language (Computer hardware description language)

Symbolic notation used for registers, for specifying operations on the contents of

registers and specifying control functions . A statement in a register transfer language consists of

control function and a list of microoperations

Micro-Operation: Operations performed in data stored in registers. Elementary

operation that can be performed parallel during one clock pulse period. The result of operation

may replace the previous binary information of a register or may be transfered to another

register. Example: Shift, count, clear, add & load

A micro-operation requires one clock pulse for the execution if the operation done in

parallel. In serial computer a microoperation requires a number of clock pulses equal to the word

time in the system.

Types of Binary Informations

Micro operations performed is based on the type of data kept in registers. Type of binary

information in the register can be classified into three categories:

 Numerical data such as binary numbers or binary-coded decimal numbers.

 Non-numerical data such as alphanumeric characters or other binary-coded symbols.

 Instruction codes, addresses and other control information used to specify the data

processing requirements in the system

Types of Micro-Operations in digital system

 Interregister transfer micro-operation: Do not change the information content when the

binary information moves from one register to another

 Arithmetic operation: Perform arithmetic on numbers stored in registers.

 Logic microoperation: Perform operations such as AND and OR on individual pairs of

bits stored in registers.

 Shift microoperation: Specify operations for shift registers.

INTER REGISTER TRANSFER

 Computer registers are designated by capital letters (sometimes followed by numerals) to

denote the function of the register. [Example: R1 - Processor Register, MAR - Memory Address

Register (holds an address for a memory unit), PC - Program Counter, IR - Instruction Register,

SR: Status Register].The cells or flipflops of n-bit register are numbered in sequence from1 to n

(from 0 to n-1) starting either from left or from right

 The register can be represented in 4 ways:

 Rectangular box with name of the register inside,

 The individual cells is assigned a letter with a subscript number,

KTU - CST202 - Computer Organization and Architecture Module: 2

3

 The numbering of cells from right to left can be marked on top of the box as the 12

bit register Memory Buffer Register (MBR).

 16 bit register is partitioned into 2 parts , bits 1 to 8 are assigned the letter L(for low)

and bits 9 to 16 are assigned the letter H(for high)

Registers can be specified in a register transfer language with a declaration statement.

For example: Registers in the above figure can be defined with declaration statement such as

DECLARE REGISTER A(8), MBR(12), PC(16)

DECLARE SUBREGISTER PC(L) = PC(1-8), PC(H) = PC(9-16).

Information transfer from one register to another is described by a replacement

operator: A ← B. This statement denotes a transfer of the content of register B into register A

and this transfer happens in one clock cycle. After the operation, the content of the B (source)

does not change. The content of the A (destination) will be lost and replaced by the new data

transferred from B.

Conditional transfer occurs only under a control condition: The condition that

determines when the transfer is to occurs called a control function. A control function is a

Boolean function that can be equal to 1 or 0. The control function is included with the statement

as follows

x’T1: A ← B

The control function is terminated with a colon. It symbolizes the requirement that the

transfer operation be executed by the hardware only when the Boolean function x’T1 = 1. ie;

when variable x = 0 and timing variable T1 = 1.

Hardware implementation of a controlled transfer: x’T1: A ← B is as follows

The outputs of register B are connected

to the input of register A and the number

of lines in this connection is equal to the

number of bits in the registers. Register

A must have a load control input so that

A a) Register A

A8 A7 A6 A5 A4 A3 A2 A1 b) Showing individual Cells

12 1

MBR c) Numbering of Cells

16 9 8 1

PC (H) PC (L) d) Portions of Register

KTU - CST202 - Computer Organization and Architecture Module: 2

4

it can be enabled when the control function is 1. It is assumed that register A has an additional

input that accepts continuous synchronized clock pulses. The control function is generated by

means of an inverter and an AND gate. It is also assumed that the control unit that generates the

timing variable T1 i synchronized with the same clock pulses that are applied to register A. The

control function stays on during one clock pulse period (when the timing variable is equal to 1)

and the transfer occurs during the next transaction of a clock pulse.

Destination register receives information from two sources but not at the same time. Consider,

T1 : C ← A

T5 : C ← B

The first line states that the contents of

register A are to be transferred to register C

when timimg variable T1 occurs. The second

statement uses the same destination register C

as the first but with a different source register

and a different timing variable. The

connections of two source registers to the

same destinationr register cannot be done direcly but requires a multiplexer circuit to select

between the two possibe paths. The block diagram of the circuit that implements the two

statement is shown in the figure. For registers with four bits each, we need a quadruple 2 to 1

line multiplexer inorder to select either A or B. When T5 =1, register B is selected but when

T1=1, register A is selected (beacsue T5 must be 0 when T1 is 1). The multiplexer and the load

input of register C are enabled everytime T1 and T5 occurs. This causes a transfer of information

from the selected ouce register to destination regeister.

The basic symbols of Register Transfer Logic are

Symbol Description Examples

Letter (and Numerals) Denotes a Register A, MDR, R2

Subscript Denotes a bit of a Register A2, B6

Parenthesis () Denotes a portion of Register PC(H), MBR (OP)

Arrow ← Denotes transfer of information A ← B

Colon : Terminates a control function X’T0:

Comma Seperates two micro-operations A ← B, B ← A

Square Brackets [] Specifies an address for memory transfer MBR ← M [MAR]

KTU - CST202 - Computer Organization and Architecture Module: 2

5

Bus transfer

 A typical digital computer has many registers, and paths must be provided to transfer

information from one register to another. The number of wires will be excessive if separate lines

are used between each register and all other registers in the system. A more efficient scheme for

transferring information between registers in a multiple-register configuration is a common bus

system.

A bus structure consists of a set of common lines, one for each bit of a register, through

which binary information is transferred one at a time. Control signals determine which register

is selected by the bus during each particular register transfer.

One way of constructing a common bus system is with multiplexers. The multiplexers

select the source register whose binary information is then placed on the bus.

 The diagram shows that the bits in the same significant position in each register are

connected to the data inputs of one multiplexer to form one line of the bus. Thus, MUX 0

multiplexes the four 0 bits of the registers, MUX 1 multiplexes the four 1 bits of the registers,

and similarly for the other two bits.

Memory Transfer

 The transfer of information from a memory word to the outside environment is called a

read operation. The transfer of new information to be stored into the memory is called write

operation. A memory word will be symbolized by the letter M.

The read operation is a

transfer from the selected

memory register M into MBR

(memory buffer register).

Read: MBR←M

KTU - CST202 - Computer Organization and Architecture Module: 2

6

Write operation is the transfer from MBR to the selected memory register M.

 Write: M ← MBR

It is necessary to specify the address of M when writing memory transfer operations.

This will be done by enclosing the addressing square brackets following the letter M.

Consider a memory unit that

receives the address from a register, called

the address register, symbolized by AR. The

data are transferred to another register,

called the data register, symbolized by DR.

The memory read operation can be stated as

follows:

Read: DR ← M [AR]

This causes a transfer of information

into DR from the memory word M selected

by the address in AR. The memory write

operation transfers the content of a register

R1 to a memory word M selected by the

address in address AR. The notation is:

Write: M [AR] ← R1

The block diagram shows the

memory unit that communicates with

multiple registers. The address to the memory unit comes from an address bus. Four registers are

connected to the bus and any one may supply an address. The output of the memory can go to

any one of four registers which are selected by a decoder. The data input to the memory come

from the data bus which selects one of four registers. A memory word is specified in such a

system by the symbol M followed by the register enclosed in a square bracket. The contents of

the register within the square bracket specifies the address for M.

ARITHMETIC, LOGIC AND SHIFT MICRO OPERATION

Arithmetic Micro-Operation

The basic arithmetic micro-operations are:

 Addition,

 Subtraction,

 Increment,

 Decrement

 Arithmetic shift.

KTU - CST202 - Computer Organization and Architecture Module: 2

7

The increment and decrement micro-operations are implemented with a combinational

circuit or with a binary up-down counter as these micro-operations use plus-one and minus-one

operation respectively.

The arithmetic add microoperations are defined by the statement

F ← A + B.

It states that the contents of register A are to be added to the contents of register B and

the sum is transfered to register F To implement this statement require 3 registers A, B and F

and a digital functon that performs the addition operation such as parallel addder.

There must be a direct relationship between the

statements written in a register transfer language and the

registers and digital functions which are required for the

implementation

Consider the statements

T2 : A ← A + B

T5 : A ← A + 1

Timing variable T2 initiates an operation to add the

contents of register B to the present contents of A with a

parallel adder. Timing variable T5 increments register A

with a counter. The transfer of the sum from parallel adder into register A can be activated with

a load input in the register. Register be a counter with parallel load capability.

The parallel adder receives input information from registers A and B. The sum bits from

the parallel adder are applied to the inputs of A and timing variable T2 loads the sum into

register A. Timing variable T5 increments there by enabling increment input register.

Two basic arithmetic operations (multiplication and divide) are not included in the basic

set of micro-operations. They are implemented by means of a combinational circuit. In general,

the multiplication micro-operation is implemented with a sequence of add and shift micro-

operations. Division is implemented with a sequence of subtract and shift micro-operations.

KTU - CST202 - Computer Organization and Architecture Module: 2

8

Logic Micro-Operations

 Logic micro-operations specify binary operations for strings of bits stored in registers.

These operations consider each bit of the register separately and treat them as binary variables.

For example, the exclusive-OR micro-operation with the contents of two registers A and B is

symbolized by the statement

F ← A ⊕ B

It specifies a logic micro-operation that consider each pair of bits in the registers as a

binary variable. Let the content of register A is 1010 and the content of register B is 1100. The

exclusive-OR micro-operation stated above symbolizes the following logic computation:

1010 Content of A

1100 Content of B

0110 Content of F ← A ⊕ B

The content of F, after the execution of the micro-operation, is equal to the bit-by-bit

exclusive-OR operation on pairs of bits in B and values of A. The logic micro-operations are

seldom used in scientific computations, but they are very useful for bit manipulation of binary

data and for making logical decisions.

Logic and Shift Micro instructions are

The + symbol has different meaning. When + occurs in a microoperation , it denotes

arithmetic plus.. When it occurs in a control or Boolean function, it denotes a logical OR

operation.

Example: T1 + T2 : A ← A + B, C ← D ∨ F

The + between T1 and T2 is an OR operation between 2 timing variables of a control

function and the + between A & B specifies an add microoperation

Shift Micro-Operations

 Shift micro-operations shift the contents of a register either left or right. These micro-

operations are generally used for serial transfer of data. They are also used along with

arithmetic, logic, and other data-processing operations.

KTU - CST202 - Computer Organization and Architecture Module: 2

9

No conventional symbol for shift operation. Here adopt symbols shl or shr [shl - shift left

shr - shift right]

Example: A ← shl A 1-bit shift to the left of register A

B ← shr B 1-bit shift to the right of register B

When the bits are shifted, the first flip-flop receives its binary information from the serial

input. During a shift-left operation the serial input transfers a bit into the rightmost position.

During a shift-right operation the serial input transfers a bit into the leftmost position. The

information transferred through the serial input determines the type of shift.

There are three types of shifts: logical, circular, and arithmetic.

Example:

A ← shl, A1 ← An

Circular shift that transfers the leftmost bit from An into the rightmost flip flop A1.

A ← shr, An ← E

Shift right operation with leftmost flip flop An receiving the value of the 1-bit register E.

PROCESSOR ORGANIZATION

The processor part of a computer CPU is sometimes referred to as the data path of the

CPU because the processor forms the paths for the data transfers between the registers in the

unit. The various paths are said to be controlled by means of gates that open the required path

and close all others. A processor unit can be designed to fulfill the requirements of a set of data

paths for a specific application.

In a processor unit, the data paths are formed by means of buses and other common lines.

The control gates that formulate the given path are essentially multiplexers and decoders whose

selection lines specify the required path. The processing of information is done by one common

digital function whose data path can be specified with a set of common selection variables.

Bus Organization

A bus organization for four processor registers is shown in Figure. Each register is connected to

two multiplexers (MUX) to form input buses A and B. The selection lines of each multiplexer

select one register for the particular bus. The A and B buses are applied to a common arithmetic

logic unit.The function selected in the ALU determines the particular operation that is to be

performed.

The shift micro-operations are implemented in the shifter .The result of the micro-operation goes

through the output bus S into the inputs of all registers. The destination register that receives the

information from the output bus is selected by a decoder.

KTU - CST202 - Computer Organization and Architecture Module: 2

10

 When enabled, this decoder activates one of the register load inputs to provide a transfer

path between the data on the S bus and the inputs of the selected destination register. The output

bus S provides the terminals for transferring data to an external destination. One input of

multiplexer A or B can receive data from the outside

The control unit that supervises the processor bus system directs the information flow

through the ALU by selecting the various components in the unit.

For example, to perform the microoperation:

R1←R2+ R3

The control must provide binary selection variables to the following selector inputs:

1. MUX A selector: to place the contents of R2 onto bus A.

2. MUX B selector: to place the contents of R3 onto bus B.

3. ALU function selector: to provide the arithmetic operation A + B.

4. Shift selector: for direct transfer from the output of the ALU onto output bus S (no

shift).

5. Decoder destination selector: to transfer the contents of bus S into R 1.

KTU - CST202 - Computer Organization and Architecture Module: 2

11

Scratchpad memory

 The register in a processor unit can be enclosed in a small memory unit. When included

in a processor unit,a small memory is sometime called a scratchpad memory.The use of a small

memory is a cheaper alternative to collecting processor registers through a bus system.The

difference between the two system is the manner in which information is selected for transfer

into the ALU. In a bus system, the

information transfer is selected by the

multiplexer that form the buses.

Processor unit that uses scratchpad

memory is shown in figure. Resource

register is selected from memory and

loaded into register A. A Second source

register is selected from memory and

loaded into register B. The information in

A and B is manipulated in the ALU and

shifter. Result of the operation is

transferred to a memory register

specifying its word address and activating

the memory-write input control.

Assume that the memory has eight

words, so that an address must be

specified with three bits. To perform the

operation

R1 ← R2 + R3

 The control must provide binary selection variable to perform the following sequence of

micro-operations

T1: A ← M[010] read R2 to register A

T2: B ← M[011] read R3 to register B

T3: M[001] ← A + B perform operation in ALU and transfer result to R1

Control function T1 must supply

an address of 010 to the memory and

activate the read and load A inputs.

control function T2 must supply an

address 011 to the memory and activate

the read and load B inputs. Control

function T3 must supply the function

code to the ALU and shifter to perform

KTU - CST202 - Computer Organization and Architecture Module: 2

12

an add operation, apply an address 001 to the memory, select the output of the shifter for the

MUX and activate the memory write input.

Some processor employ a 2 port memory in order to overcome the delay caused when

reading two source registers. A 2-port has two separate address lines to select two words of

memory simultaneously. The organization of a processor unit with a 2-port scratchpad memory

is shown in figure.

Accumulator Register

 An accumulator is a register for short-term, intermediate storage of arithmetic and logic

data in a computer's CPU (central processing unit).The most elementary use for an accumulator

is adding a sequence of numbers. The numerical value in the accumulator increases as each

number is added, exactly as it happens in a simple desktop calculator (but much faster, of

course). Once the sum has been determined, it is written to the main memory or to another

register.

 The accumulator register in a processor unit is a

multipurpose register capable of performing not only the

add micro-operation, but many other operations as well.

The block diagram shows the processor unit that

employs an accumulator units.

 To form the sum of two numbers stored in

processor registers, it is nessesary to add them in the A

register using the following sequence of micro-

operations:

 T1: A ← 0 Clear A

 T2: A ← A + R1 Transfer R1 to A

 T3: A ← A + R2 Add R2 to A

The sum / result formed in A may be used for

other computation or may be transfered to a

required destination.

Status Registers

The relative magnitude of two numbers may be determined by subtracting one number

from the other andthen checking certain bit conditions in the resultant difference. This status bit

conditions (often calledcondition-code bits or flag bits) are stored in a status register.

Status register is a 4 bit register. The four bits are C (carry), Z (zero),S (sign) and V

(overflow).These bits are set or cleared as a result of an operation performed in the ALU.

KTU - CST202 - Computer Organization and Architecture Module: 2

13

 Bit C is set if the output carry of an ALU is 1.

 Bit S is set to 1 if the highest order bit of the result in the output of the ALU is 1.

 Bit Z is set to 1 if the output of the ALU contains all O's.

 Bit V is set if the exclusive —OR of carries C8 and C9 is 1, and cleared

otherwise. This is the condition for overflow when the numbers are in signed 2's

complement representation. For an 8 bit ALU, V is set if the result is greater than

127 or less than -128.

After an ALU operation, status bits can be checked to determine the relationship that

exist between the values of A and B.

 If bit V is set after the addition two signed numbers, it indicates an overflow condition. If

Z is set after anexclusive OR operation, it indicates that A=B. A single bit in A can be checked to

determine if it is 0 or 1by masking all bits except the bit in question and then checking the Z

status bit.

Relative magnitudes of A and B can be checked by compare operation. If A-B is

performed for twounsigned binary numbers, relative magnitudes of A and B can be determined

from the values transferred tothe C and Z bits. If Z=1,we knows that A=B, since A-B=0. If Z=0,

then we know that A is not equal to B.

Similarly C=1 if A>=B and C=0 if A<B. The following table lists the various conditions

KTU - CST202 - Computer Organization and Architecture Module: 2

14

ARITHMETIC LOGIC UNIT

 An arithmetic logic unit (ALU) is a multi operation, combinational-logic digital function.

It can perform a set of basic arithmetic operations and a set of logic operations. The ALU has a

number of selection lines to select a particular operation in the unit. The selection lines are

decoded within the ALU so that k selection variables can specify up to 2
k
 distinct operations.The

figure shows the block diagram of 4 bit ALU.

 The design of a typical ALU will be carried out in three stages. First, the design of the

arithmetic section will be undertaken. Second, the design of the logic section will be considered.

Finally, the arithmetic section will be modified so that it can perform both arithmetic and logic

operations.

Design of Arithmetic Circuit

The basic component of the arithmetic section of an ALU is a parallel adder. A parallel

adder is constructed with a number of full-adder circuits connected in cascade. By controlling

the data inputs to the parallel adder, it is possible to obtain different types of arithmetic

operations.

The figure demonstrates the arithmetic operations obtained when one set of inputs to a

parallel adder is controlled externally. The number of bits in the parallel adder may be of any

value. The input carry Cin goes to the full-adder circuit in the least significant bit position. The

output carry Cout comes from the full-adder circuit in the most significant bit position.

KTU - CST202 - Computer Organization and Architecture Module: 2

15

The circuit that controls input B to provide the functions is called a true/complement, one/zero

element. This circuit is illustrated in the following figure.

The 2 selection lines s1 and s0 control the input of each B terminal.

 The input A is applied directly to the 4-bit parallel adder and the input B is

modified. The resultant arithmetic circuit is shown in below figure.

A 4-bit arithmetic circuit that performs 8 arithmetic operations is shown in following Figure.

S0 S1 Y

0 0 0

0 1 B’1

1 0 B1

1 1 1

KTU - CST202 - Computer Organization and Architecture Module: 2

16

 The function table for the arithmetic circuit is given below.

The 4 full-adder (FA) circuits constitute the parallel adder.

 The carry into the first stage is the input carry.

 The carry out of the fourth stage is the output carry.

 All other carries are connected internally from one stage to the next.

The selection variables are s1, s0, and Cin .

 Variables s1ands0 control all of the B inputs to the full-adder circuits.

The A inputs go directly to the other inputs of the full adders.

The arithmetic operations implemented in the arithmetic circuit are listed in Table.

 The values of the Y inputs to the full-adder circuits are a function of selection

variabless1 and s0.

 Adding the value of Y in each case to the value of A plus the Cin value gives the

arithmetic operation in each entry.

 The arithmetic circuit of above Figure needs a combinational circuit in each stage

specified by the Boolean functions:

 where n is the number of bits in the arithmetic circuit.

Effect of Output Carry in the arithmetic circuit

KTU - CST202 - Computer Organization and Architecture Module: 2

17

Design of other Arithmetic Circuits

The design of any arithmetic circuit can be done by following the procedure outlined in the

previous example.

 Assuming that all operations in the set can be generated through a parallel adder

Steps in design

i. Start by obtaining a function diagram.

ii. Obtain a function table from the function diagram that relates the inputs of the full-adder

circuit to the external inputs.

iii. Obtain the combinational gates from the function table that must be added to each full-adder

stage.

This procedure is demonstrated in the following example.

Qn) Design an adder/subtractor circuit with one selection variable s and two inputs A and
B.

When s = 0, the circuit performs A+B

When s = 1, the circuit performs A-B by taking the 2's complement of B.

KTU - CST202 - Computer Organization and Architecture Module: 2

18

Design of Logic Circuit

 The logic microoperations manipulate the bits of the operands separately and treat each

bit as a binary variable. The 16 logic operations can be generated in one circuit and selected by

means of four selection lines. Since all logic operations can be obtained by means of AND, OR,

and NOT (complement) operations, it may be more convenient to employ a logic circuit with

just these operations.

For three operations, we need two selection variables. But two selection lines can select

among four logic operations, so we choose also the exclusive-OR (XOR) function for the logic

circuit to be designed in this and the next section.

The simplest and most straight forward way to design a logic circuit is shown in figure

given below. The diagram shows one typical stage designated by subscript i. The circuit must be

repeated n times for an n-bit logic circuit.

KTU - CST202 - Computer Organization and Architecture Module: 2

19

 The four gate generate four logic operations OR, XOR, AND, and NOT. The two

selection variables in the multiplexer select one of the gates for the output. The function table

lists the output logic generated as a function of the two selection variables.

The logic circuit can be combined with the arithmetic circuit to produce one arithmetic

logic unit. Selection variables S1 and S0 can be made common to both sections provided we use

a third selection variable, S2, to differentiate between the two. This configuration is illustrated in

the below figure.

The outputs of the logic and arithmetic circuits in each stage go through a multiplexer

with selection variable S2.

When S2 = 0, the arithmetic output is selected,

when S2 = 1, the logic output is selected.

Although the two circuits can be combined in this manner, this is not the best way to

design an ALU.A more efficient ALU can be obtained if we investigate the possibility of

generating logic operations in an already available arithmetic circuit. This can be done by

KTU - CST202 - Computer Organization and Architecture Module: 2

20

inhibiting all input carries into the full-adder circuits of the parallel adder. Consider the Boolean

function that generates the output sum in a full-adder circuit:

F=X ⊕ Y ⊕ Cin

The input carry Cin in each stage can be made to be equal to 0 when a selection

variableS2is equal to 1. The result would be:

F=X ⊕ Y

This expression is valid because of the property of the X-OR operation:

X⊕0 = X

Thus, with the input carry to each stage equal to 0, the full-adder circuits generate the

exclusive-OR operation.

Now refer the figure of arithmetic unit circuit.

 The value of Yi can be selected by means of the two selection variables to be

equal to either 0, Bi, Bi', or l.

 The value of Xi is always equal to input Ai. Table given below shows the four

logic operations obtained when s2=0

 This selection variable forces Ci to be equal to 0 whiles1 and s0 choose a

particular value for Yi.

 The 4 logic operations obtained by this configuration are transfer, exclusive-OR,

equivalence, and complement.

The third entry is the equivalence operation because:

The last entry in the table is the NOT or complement operation because:

The table has one more column which lists the four logic operations we want to include in
the ALU.

 Two of these operations, XOR and NOT, are already available.

 It is possible to modify the arithmetic circuit further so that it will generate the logic
functions OR and AND instead of the transfer and equivalence functions.

KTU - CST202 - Computer Organization and Architecture Module: 2

21

Design of Arithmetic Logic Unit

A basic ALU with eight arithmetic operations and four logic operations can be designed with the

details already have.

We already have

 Three selection variables s2, s1, and s0to select eight different operations

 The input carry Cin is used to select four additional arithmetic operations.

 With s2 = 0, selection variables s1and s0 together with Cin will select the eight arithmetic

operations

 With s2 = l, selection variables s1 and s0 will select the four logic operations OR, XOR,

AND, and NOT.

The design of an ALU is a combinational-logic problem.

 We can design one stage of the ALU and then duplicate it for the number of stages

required.

 There are six inputs to each stage: Ai, Bi, Ci,s2, s1 and s0.

 There are two outputs in each stage: output Fi and the carry out Ci+1

One can formulate a truth table with 64 entries and simplify the two output functions.

Here we choose to employ an alternate procedure that uses the availability of a parallel adder.

Design steps of ALU

1. Design the arithmetic section independent of the logic section.

2. Determine the logic operations obtained from the arithmetic circuit in step 1, assuming

that the input carries to all stages are 0.

3. Modify the arithmetic circuit to obtain the required logic operations.

 The solution to the first design step is shown in Arithmetic unit design.

 The solution to the second design step is presented in Logic unit design.

 The solution of the third step is carried out below.

From Table, we see that

 When s2= l, the input carry Ci in each stage must be 0. Ci=0.

 With s1,s0 = 00, each stage as it stands generates the function Fi = Ai. [Since Xi=Ai and

Yi=0; refer diagram]

To change the output to an OR operation, we must change the input to each full-adder circuit

from Ai to Ai+Bi. This can be accomplished by ORing Bi and Ai when s2s1s0 = 100.

The other selection variables that give an undesirable output occur when s2s1s0= 110. The unit

as it stands generates an output but we want togenerate the AND operation

Fi = Ai.Bi.

Let us investigate the possibility of ORing each input Ai with some Boolean function Ki, to

change Xi. Since we can’t change Yi.

KTU - CST202 - Computer Organization and Architecture Module: 2

22

The function so obtained is then used for Xi when s2s1s0= 110:

Careful inspection of the result reveals that if the variable Ki = B,' , we obtain an output:

Two terms are equal to 0 because Bi.Bi' = 0. The result obtained is the AND operation as

required.

The conclusion is that, if Ai is ORed with Bi' when s2s1s0= 110, the output will generate the

AND operation.

The final ALU is shown in figure below Only the first two stages are drawn, but the

diagram can be easily extended to more stages. The inputs to each full-adder circuit are specified

by the Boolean functions:

Xi = Ai + S2 S1’ S0’Bi + S2 S1 S0’ Bi

Yi = S0 Bi + S1 Bi’

Zi = S2’ Ci

When S2 = 0, the three functions reduce to:

Xi = Ai

Yi = S0 Bi + S1 Bi’

Zi = Ci

KTU - CST202 - Computer Organization and Architecture Module: 2

23

Which are the function for the arithmetic circuit. The logical operations are generated

when S2 = 1. For S2 S1 S0 = 1 0 1 or 1 1 1, the function reduce to:

Xi = Ai Yi = S0 Bi + S1 Bi’ Zi = 0

The function table for the Arithmetic and Logic Unit is shown below. The 12 operations generated

in the ALU are summarized in Table.

The particular function is selected through s2,sl,

s0, and Cin.

The arithmetic operations are identical to the

ones listed for the arithmetic circuit.

The value of Cin for the four logic functions has

no effect on the operation of the unit and
those entries are marked with don't-care X 's.

Design of Combinational Logic Shifter

KTU - CST202 - Computer Organization and Architecture Module: 2

24

The shift unit attached to the processor transfers the output of the ALU onto the output

bus. Shifter may function in four different ways.

1. The shifter may transfer the information directly without a shift.

2. The shifter may shift the information to the right.

3. The shifter may shift the information to the left.

4. In some cases no transfer is made from ALU to the output bus.

A shifter is a bi-directional shift-register with parallel load. The information from ALU

can be transferred to the register in parallel and then shifted to the right or left. In this

configuration, a clock pulse is needed for the transfer to the shift register, and another pulse is

needed for the shift. Another clock pulse may also in need of when information is passed from

shift register to destination register.

The number of clock pulses may reduce if the shifter is implemented with a

combinational circuit. A combinational—logic shifter can be constructed with multiplexers. The

above figure will show the same.

Shifter operation can be selected by two variables H1 H0

 If H1 H0 = 0 0 No shift is executed and the signal from F go directly to S lines

 If H1 H0 = 0 1 Shift Right is executed

 If H1 H0 = 1 0 Shift Left is executed

 If H1 H0 = 1 1 No operations

PROCESSOR UNIT

A block diagram of a processor unit is shown in figure. It consists of seven registers R1

through R7 and a status register. The outputs of the seven registers go through two multiplexers

to select the inputs to the ALU.

KTU - CST202 - Computer Organization and Architecture Module: 2

25

`

Input data from an external source are also selected by the same multiplexers. The output

of the ALU goes through a shifter and then to a set of external output terminals. The output from

the shifter can be transferred to any one of the registers or to an external destination.

There are 16 selection variables in the unit, and their function is specified by a Control

Word. The 16-bit control word, when applied to the selection variables in the processor,

specifies a given microoperation. The Control Word is partitioned into 6 fields, with each field

designated by a letter name. All fields, except Cin, have a code of three bits.

The functions of all selection variables are specified in table below.

KTU - CST202 - Computer Organization and Architecture Module: 2

26

The 3 bits of A select a Source Register for the input to left side of the ALU.

 The B field is the same, but it selects the source information for the right input of the ALU.

 The D field selects a Destination Register.

 The F field, together with the bit in Cin, selects a Function for the ALU.

 The H field selects the type of Shift in the shifter unit.

The 3-bit binary code listed in the table specifies the code for each of the five fields A,

B, D, input data, F, and H. The register selected by A, B, and D is the one whose decimal

number is equivalent to the binary number in the code. When the A or B field is 000, the

corresponding multiplexer selects the input data. When D = 000, no destination register is

selected.

The three bits in the F field, together with the input carry Cin, provide the 12 operations

of the ALU as specified in above table. Note that there are two possibilities for F = A. In one

case the carry bit C is cleared, and in the other case it is set to 1.

A control word of 16 bits is needed to specify a microoperation for the processor unit.

 The most efficient way to is to store them in a memory unit which functions as a control

memory.

 The sequence of control words is then read from the control memory, one word at a

time, to initiate the desired sequence of microoperations.

 This type of control organization is called Microprogramming.

DESIGN OF ACCUMULATOR

Some processor units distinguish one register from all others and call it an accumulator

register. The block diagram of an accumulator that

forms a sequential circuit is shown in figure below.

The A register and the associated

combinational circuit constitutes a sequential circuit.

The combinational circuit replaces the ALU but cannot

KTU - CST202 - Computer Organization and Architecture Module: 2

27

be separated from the register, since it is only the combinational-circuit part of a sequential

circuit. The A register is referred to as the accumulator register and is sometimes denoted by the

symbol AC. Here, accumulator refers to both the A register and its associated combinational

circuit.

The external inputs to the accumulator are the data inputs from B and the control

variables that determine the micro operations for the register. The next state of register A is a

function of its present state and of the external inputs.

Accumulator can also perform data processing operations. Total of nine operations is

considered here for the design of accumulator circuit.

In all listed microoperations A is the source register. B register is used as the second

source register. The destination register is also accumulator register itself. For a complete

accumulator there will be n stages.

Fig: 4 bit accumulator constructed with 4 bits

KTU - CST202 - Computer Organization and Architecture Module: 2

28

The inputs and outputs of each stage can be connected in cascade to form a complete

accumulator. Here we are discussing the design of a 4 bit accumulator. The number on top of

each block represents the bit position.

All blocks receive 8 control variables P1 to P8 and the clock pulses from CP. The other

six inputs and four outputs are same as with the typical stage. The zero detect chain is obtained

by connecting the z variables in cascade, with the first block receiving a binary constant I . The

last stage produces the zero detect variable Z.

Total number of terminals in the 4 bit accumulator is 25, including terminals for the A

outputs. Incorporating two more terminals for power supply, the circuit can be enclosed within

one IC package having 27 or 28 pins.

The number of terminals for the control variable can be reduced from 9 to 4 if a decoder

is inserted in the IC. In such cases, IC pin count is also reduced to 22 and the accumulator can be

extended to 16 microoperations without adding external pins (That is, with 4 bits we can identify

16 operations).

